PROGNOSIS

FUO-related mortality rates have continuously declined over recent decades. The majority of fevers are caused by treatable diseases, and the risk of death related to FUO is, of course, dependent on the underlying disease. In a study by our group (Table 26-1), none of 37 FUO patients without a diagnosis died during a follow-up period of at least 6 months; 4 of 36 patients with a diagnosis died during follow-up due to infection (n = 1) or malignancy (n = 3). Other studies have also shown that malignancy accounts for most FUO-related deaths. Non-Hodgkin’s lymphoma carries a disproportionately high death toll. In nonmalignant FUO, fatality rates are very low. The good outcome in patients without a diagnosis confirms that potentially lethal occult diseases are very unusual and that empirical therapy with antibiotics, antituberculous agents, or glucocorticoids is rarely required in stable patients. In less affluent regions, infectious diseases are still a major cause of FUO, and outcomes may be different.

SECTION 3 NERVOUS SYSTEM DYSFUNCTION

27 Syncope
Roy Freeman

Syncope is a transient, self-limited loss of consciousness due to acute global impairment of cerebral blood flow. The onset is rapid, duration brief, and recovery spontaneous and complete. Other causes of transient loss of consciousness need to be distinguished from syncope; these include seizures, vertebrobasilar ischemia, hypoxemia, and hypoglycemia. A syncope prodrome (presyncope) is common, although loss of consciousness may occur without any warning symptoms. Typical presyncope symptoms include dizziness, lightheadedness or faintness, weakness, fatigue, and visual and auditory disturbances. The causes of syncope can be divided into three general categories: (1) neurally mediated syncope (also called reflex or vasovagal syncope), (2) orthostatic hypotension, and (3) cardiac syncope.

Neurally mediated syncope comprises a heterogeneous group of functional disorders that are characterized by a transient change in the reflexes responsible for maintaining cardiovascular homeostasis. Episodic vasodilation (or loss of vasoconstrictor tone) and bradycardia occur in varying combinations, resulting in temporary failure of blood pressure control. In contrast, in patients with orthostatic hypotension due to autonomic failure, these cardiovascular homeostatic reflexes are chronically impaired. Cardiac syncope may be due to arrhythmias or structural cardiac diseases that cause a decrease in cardiac output. The clinical features, underlying pathophysiologic mechanisms, therapeutic interventions, and prognoses differ markedly among these three causes.

EPIDEMIOLOGY AND NATURAL HISTORY

Syncope is a common presenting problem, accounting for approximately 3% of all emergency room visits and 1% of all hospital admissions. The annual cost for syncope-related hospitalization in the United States is ~$2.4 billion. Syncope has a lifetime cumulative incidence of up to 35% in the general population. The peak incidence in the young occurs between ages 10 and 30 years, with a median peak incidence of up to 35% in the general population. The peak incidence is unaffected. By contrast, syncope due to a cardiac cause, either structural heart disease or primary arrhythmic disease, is associated with an increased risk of sudden cardiac death and mortality from other causes. Similarly, mortality rate is increased in individuals with syncope due to orthostatic hypotension related to age and the associated comorbid conditions (Table 27-1).

PATHOPHYSIOLOGY

The upright posture imposes a unique physiologic stress upon humans; most, although not all, syncopal episodes occur from a standing position. Standing results in pooling of 500–1000 mL of blood in the lower extremities and splanchic circulation. There is a decrease in venous return to the heart and reduced ventricular filling that result in diminished cardiac output and blood pressure. These hemodynamic changes provoke a compensatory reflex response, initiated by the baroreceptors in the carotid sinus and aortic arch, resulting in increased sympathetic outflow and decreased vagal nerve activity (Fig. 27-1). The reflex increases peripheral resistance, venous return to the heart, and cardiac output and thus limits the fall in blood pressure. If this response fails, as is the case chronically in orthostatic hypotension and transiently in neurally mediated syncope, cerebral hypoperfusion occurs.

Syncope is a consequence of global cerebral hypoperfusion and thus represents a failure of cerebral blood flow autoregulatory mechanisms.
Myogenic factors, local metabolites, and to a lesser extent autonomic neurovascular control are responsible for the autoregulation of cerebral blood flow (Chap. 330). The latency of the autoregulatory response is 5–10 s. Typically cerebral blood flow ranges from 50 to 60 mL/min per 100 g brain tissue and remains relatively constant over perfusion pressures ranging from 50 to 150 mmHg. Cessation of blood flow for 6–8 s will result in loss of consciousness, while impairment of consciousness ensues when blood flow decreases to 25 mL/min per 100 g brain tissue.

From the clinical standpoint, a fall in systemic systolic blood pressure to ~50 mmHg or lower will result in syncope. A decrease in cardiac output and/or systemic vascular resistance—the determinants of blood pressure—thus underlies the pathophysiology of syncope. Common causes of impaired cardiac output include decreased effective circulating blood volume; increased thoracic pressure; massive pulmonary embolus; cardiac brady- and tachyarrhythmias; valvular heart disease; and myocardial dysfunction. Systemic vascular resistance may be decreased by central and peripheral autonomic nervous system diseases, sympatholytic medications, and transiently during neurally mediated syncope. Increased cerebral vascular resistance, most frequently due to hypocarbia induced by hyperventilation, may also contribute to the pathophysiology of syncope.

Two patterns of electroencephalographic (EEG) changes occur in syncopal subjects. The first is a "slow-flat-slow" pattern (Fig. 27-2) in which normal background activity is replaced with high-amplitude slow delta waves. This is followed by sudden flattening of the EEG—a cessation or attenuation of cortical activity—followed by the return of slow waves, and then normal activity. A second pattern, the "slow pattern," is characterized by increasing and decreasing slow wave activity only. The EEG flattening that occurs in the slow-flat-slow pattern is a marker of more severe cerebral hypoperfusion. Despite the presence of myoclonic movements and other motor activity during some syncopal events, EEG seizure discharges are not detected.

CLASSIFICATION

NEUROLYTICALLY MEDIATED SYNCOPE

Neurally mediated (reflex; vasovagal) syncope is the final pathway of a complex central and peripheral nervous system reflex arc. There is a sudden, transient change in autonomic efferent activity with increased parasympathetic outflow, plus sympathoinhibition (the vasodepressor response), resulting in bradycardia, vasodilation, and/or reduced vasoconstrictor tone. The resulting fall in systemic blood pressure can then reduce cerebral blood flow to below the compensatory limits of autoregulation (Fig. 27-3). In order to elicit neurally mediated syncope, a functioning autonomic nervous system is necessary, in contrast to syncope resulting from autonomic failure (discussed below).
Multiple triggers of the afferent limb of the reflex arc can result in neutrally mediated syncope. In some situations, these can be clearly defined, e.g., the carotid sinus, the gastrointestinal tract, or the bladder. Often, however, the trigger is less easily recognized and the cause is multifactorial. Under these circumstances, it is likely that different afferent pathways converge on the central autonomic network within the medulla that integrates the neural impulses and mediates the vasodepressor-bradycardic response.

Classification of Neurally Mediated Syncope

Neurally mediated syncope may be subdivided based on the predominant efferent pathway. Vasodepressor syncope describes syncope predominantly due to efferent, sympathetic, vasoconstrictor failure; cardioinhibitory syncope describes syncope predominantly associated with bradycardia or asystole due to afferent vagal failure.

Figure 27.2 The electroencephalogram (EEG) in vasovagal syncope. A 1-min segment of a tilt-table test with typical vasovagal syncope demonstrating the “slow-flat-slow” EEG pattern. Finger beat-to-beat blood pressure, electrocardiogram (ECG), and selected EEG channels are shown. EEG slowing starts when systolic blood pressure drops to ~50 mm Hg; heart rate is then approximately 45 beats/min (bpm). Asystole occurred, lasting about 8 s. The EEG flattens for a similar period, but with a delay. A transient loss of consciousness, lasting 14 s, was observed. There were muscle jerks just before and just after the flat period of the EEG. (Figure reproduced with permission from W Wieling et al: Brain 132:2630, 2009.)

Figure 27.3 A. The paroxysmal hypotensive-bradycardic response that is characteristic of neutrally mediated syncope. Noninvasive beat-to-beat blood pressure and heart rate are shown over 5 min (from 60 to 360 s) of an upright tilt on a tilt table. B. The same tracing expanded to show 80 s of the episode (from 80 to 200 s). BP, blood pressure; bpm, beats per minute; HR, heart rate.
TABLE 27-2
CAUSES OF SYNCOPE

A. Neurally Mediated Syncope

Vasovagal syncope
 Provoked fear, pain, anxiety, intense emotion, sight of blood, unpleasant sights and odors, orthostatic stress

Situational reflex syncope
 Pulmonary
 Cough syncope, wind instrument player’s syncope, weightlifter’s syncope, “mess trick” and “fainting lark,” sneeze syncope, airway instrumentation

Urogenital
 Postmicturition syncope, urogenital tract instrumentation, prostatic massage

Gastrointestinal
 Swallow syncope, glossopharyngeal neuralgia, esophageal stimulation, gastrointestinal tract instrumentation, rectal examination, defecation syncope

Cardiac
 Bezold-Jarisch reflex, cardiac outflow obstruction

Carotid sinus
 Carotid sinus sensitivity, carotid sinus massage

Ocular
 Ocular pressure, ocular examination, ocular surgery

B. Orthostatic Hypotension

Primary autonomic failure due to idiopathic central and peripheral neurodegenerative diseases—the "synucleinopathies"
 Lewy body diseases
 Parkinson’s disease
 Lewy body dementia
 Pure autonomic failure
 Multiple system atrophy (the Shy-Drager syndrome)

Secondary autonomic failure due to autonomic peripheral neuropathies
 Diabetes
 Hereditary amyloidosis (familial amyloid polyneuropathy)
 Primary amyloidosis (AL amyloidosis; immunoglobulin light chain associated)
 Hereditary sensory and autonomic neuropathies (HSAN) (especially type III—familial dysautonomia)
 Idiopathic immune-mediated autonomic neuropathy
 Autoimmune autonomic ganglionopathy
 Sjögren’s syndrome
 Paraneoplastic autonomic neuropathy
 HIV neuropathy
 Postprandial hypotension
 Iatrogenic (drug-induced)
 Volume depletion

C. Cardiac Syncope

Arrhythmias
 Sinus node dysfunction
 Atrioventricular dysfunction
 Supraventricular tachycardias
 Ventricular tachycardias
 Inherited channelopathies

Cardiac structural disease
 Valvular disease
 Myocardial ischemia
 Obstructive and other cardiomyopathies
 Atrial myxoma
 Pericardial effusions and tamponade

*Hyperventilation for ~1 minute, followed by sudden chest compression. **Hyperventilation (~20 breaths) in a squatting position, rapid rise to standing, then Valsalva.

to increased vagal outflow; and mixed syncope describes syncope in which there are both vagal and sympathetic reflex changes.

Features of Neurally Mediated Syncope In addition to symptoms of orthostatic intolerance such as dizziness, lightheadedness, and fatigue, premonitory features of autonomic activation may be present in patients with neurally mediated syncope. These include diaphoresis, pallor, palpitations, nausea, hyperventilation, and yawning. During the syncopal event, proximal and distal myoclonus (typically arrhythmic and multifocal) may occur, raising the possibility of epilepsy. The eyes typically remain open and usually deviate upward. Pupils are usually dilated. Rolling eye movements may occur. Grunting, moaning, snorting, and stertorous breathing may be present. Urinary incontinence may occur. Fecal incontinence is very rare. Postictal confusion is also rare, although visual and auditory hallucinations and near death and out-of-body experiences are sometimes reported.

Although some predisposing factors and provocative stimuli are well established (for example, motionless upright posture, warm ambient temperature, intravascular volume depletion, alcohol ingestion, hypoxemia, anemia, pain, the sight of blood, venipuncture, and intense emotion), the underlying basis for the widely different thresholds for syncope among individuals exposed to the same provocative stimulus is not known. A genetic basis for neurally mediated syncope may exist; several studies have reported an increased incidence of syncope in first-degree relatives of fainters, but no gene or genetic marker has been identified, and environmental, social, and cultural factors have not been excluded by these studies.

TREATMENT NEURALLY MEDIATED SYNCOPE

Reassurance, avoidance of provocative stimuli, and plasma volume expansion with fluid and salt are the cornerstones of the management of neurally mediated syncope. Isometric counterpressure maneuvers of the limbs (leg crossing or handgrip and arm tensing) may raise blood pressure by increasing central blood volume and cardiac output. By maintaining pressure in the autoregulatory zone, these maneuvers avoid or delay the onset of syncope. Randomized controlled trials support this intervention.

Fludrocortisone, vasoconstricting agents, and beta-adrenoceptor antagonists are widely used by experts to treat refractory patients, although there is no consistent evidence from randomized controlled trials for any pharmacotherapy to treat neurally mediated syncope. Because vasodilatation is the dominant pathophysiologic syncopal mechanism in most patients, use of a cardiac pacemaker is rarely beneficial. Possible exceptions are older patients (>40 years) in whom syncope is associated with asystole, or severe bradycardia and patients with prominent cardioinhibition due to carotid sinus syndrome. In these patients, dual-chamber pacing may be helpful.

ORTHOSTATIC HYPOTENSION

Orthostatic hypotension, defined as a reduction in systolic blood pressure of at least 20 mmHg or diastolic blood pressure of at least 10 mmHg within 3 min of standing or head-up tilt on a tilt table, is a manifestation of sympathetic vasoconstrictor (autonomic) failure (Fig. 27-4). In many (but not all) cases, there is no compensatory increase in heart rate despite hypotension; with partial autonomic failure, heart rate may increase to some degree but is insufficient to maintain cardiac output. A variant of orthostatic hypotension is “delayed” orthostatic hypotension, which occurs beyond 3 min of standing; this may reflect a mild or early form of sympathetic adrenergic dysfunction. In some cases, orthostatic hypotension occurs within 15 s of standing (so-called “initial” orthostatic hypotension), a finding that may reflect a transient mismatch between cardiac output and peripheral vascular resistance and does not represent autonomic failure.

Characteristic symptoms of orthostatic hypotension include lightheadedness, dizziness, and presyncope (near-faintness) occurring in response to sudden postural change. However, symptoms may be
absent or nonspecific, such as generalized weakness, fatigue, cognitive slowing, leg buckling, or headache. Visual blurring may occur, likely due to retinal or occipital lobe ischemia. Neck pain, typically in the suboccipital, posterior cervical, and shoulder region (the “coat-hanger headache”), most likely due to neck muscle ischemia, may be the only symptom. Patients may report orthostatic dyspnea (thought to reflect ventilation-perfusion mismatch due to inadequate perfusion of ventilated lung apices) or angina (attributed to impaired myocardial perfusion even with normal coronary arteries). Symptoms may be exacerbated by exertion, prolonged standing, increased ambient temperature, or meals. Syncope is usually preceded by warning symptoms, but may occur suddenly, suggesting the possibility of a seizure or cardiac cause.

Supine hypertension is common in patients with orthostatic hypotension due to autonomic failure, affecting over 50% of patients in some series. Orthostatic hypotension may present after initiation of therapy for hypertension, and supine hypertension may follow treatment of orthostatic hypotension. However, in other cases, the association of the two conditions is unrelated to therapy; it may in part be explained by baroreflex dysfunction in the presence of residual sympathetic outflow, particularly in patients with central autonomic degeneration.

Causes of Neurogenic Orthostatic Hypotension Causes of neurogenic orthostatic hypotension include central and peripheral autonomic nervous system dysfunction (Chap. 454). Autonomic dysfunction of other organ systems (including the bladder, bowels, sexual organs, and sudomotor system) of varying severity frequently accompanies orthostatic hypotension in these disorders (Table 27-2).

The primary autonomic degenerative disorders are multiple system atrophy (the Shy-Drager syndrome; Chap. 454), Parkinson’s disease (Chap. 449), dementia with Lewy bodies (Chap. 448), and pure autonomic failure (Chap. 454). These are often grouped together as "synucleinopathies" due to the presence of alpha-synuclein, a small protein that precipitates predominantly in the cytoplasm of neurons in the Lewy body disorders (Parkinson’s disease, dementia with Lewy bodies, and pure autonomic failure) and in the glia in multiple system atrophy.

Peripheral autonomic dysfunction may also accompany small-fiber peripheral neuropathies such as those seen in diabetes, amyloid, immune-mediated neuropathies, hereditary sensory and autonomic neuropathies (HSAN; particularly HSAN type III, familial dysautonomia), and inflammatory neuropathies (Chaps. 459 and 460). Less frequently, orthostatic hypotension is associated with the peripheral neuropathies that accompany vitamin B₁₂ deficiency, neurototoxic exposure, HIV and other infections, and porphyria.

Patients with autonomic failure and the elderly are susceptible to falls in blood pressure associated with meals. The magnitude of the blood pressure fall is exacerbated by large meals, meals high in carbohydrate, and alcohol intake. The mechanism of postprandial syncope is not fully elucidated.

Orthostatic hypotension is often iatrogenic. Drugs from several classes may lower peripheral resistance (e.g., α-adrenoceptor antagonists used to treat hypertension and prostatic hypertrophy; antihypertensive agents of several classes; nitrates and other vasodilators; tricyclic agents and phenothiazines). Iatrogenic volume depletion due to diuresis and volume depletion due to medical causes (hemorrhage, vomiting, diarrhea, or decreased fluid intake) may also result in decreased effective circulatory volume, orthostatic hypotension, and syncope.

TREATMENT

ORTHOSTATIC HYPOTENSION

The first step is to remove reversible causes—usually vasoactive medications (Table 454-6). Next, nonpharmacologic interventions should be introduced. These interventions include patient education regarding staged moves from supine to upright; warnings about the hypertensive effects of large meals; instructions about the isometric counterpressure maneuvers that increase intravascular pressure (see above); and raising the head of the bed to reduce supine hypertension. Intravascular volume should be expanded by increasing dietary fluid and salt. If these nonpharmacologic measures fail, pharmacologic intervention with fluordrocortisone acetate and vasoconstricting agents such as midodrine, c-dihydroxyphenylserine, and pseudoephedrine should be introduced. Some patients with intractable symptoms require additional therapy with supplemental agents that include pyridostigmine, yohimbine, desmopressin acetate (DDAVP), and erythropoietin (Chap. 454).

CARDIAC SYNCOPES

Cardiac (or cardiovascular) syncope is caused by arrhythmias and structural heart disease. These may occur in combination because structural disease renders the heart more vulnerable to abnormal electrical activity.

Arrhythmias Bradyarrhythmias that cause syncope include those due to severe sinus node dysfunction (e.g., sinus arrest or sinoatrial block) and atrioventricular (AV) block (e.g., Mobitz type II, high-grade, and complete AV block). The bradyarrhythmias due to sinus node dysfunction are often associated with an atrial tachyarrhythmia, a disorder known as the tachycardia-bradycardia syndrome. A prolonged pause following the termination of a tachycardic episode is a frequent cause of syncope in patients with the tachycardia-bradycardia syndrome. Mediations of several classes may also cause bradyarrhythmias of sufficient severity to cause syncope. Syncope due to bradyarrhythmia or asystole is referred to as a Stokes-Adams attack.

Ventricular tachyarrhythmias frequently cause syncope. The likelihood of syncope with ventricular tachycardia is in part dependent on...
the ventricular rate; rates below 200 beats/min are less likely to cause syncope. The compromised hemodynamic function during ventricular tachycardia is caused by ineffective ventricular contraction, reduced diastolic filling due to abbreviated filling periods, loss of AV synchrony, and concurrent myocardial ischemia.

Several disorders associated with cardiac electrophysiologic instability and arrhythmogenesis are due to mutations in ion channel subunit genes. These include the long QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia. The long QT syndrome is a genetically heterogeneous disorder associated with prolonged cardiac repolarization and a predisposition to ventricular arrhythmias. Syncope and sudden death in patients with long QT syndrome result from a unique polymorphic ventricular tachycardia called torsades des points that degenerates into ventricular fibrillation. The long QT syndrome has been linked to genes encoding K⁺ channel α-subunit, voltage-gated Na⁺ channel, and a scaffolding protein, ankyrin B (ANK2). Brugada syndrome is characterized by idioventricular fibrillation in association with right ventricular electrocardiogram (ECG) abnormalities without structural heart disease. This disorder is also genetically heterogeneous, although it is most frequently linked to mutations in the Na⁺ ion channel α-subunit, SCN5A. Catecholaminergic polymorphic tachycardia is an inherited, genetically heterogeneous disorder associated with exercise- or stress-induced ventricular arrhythmias, syncope, or sudden death. Acquired QT interval prolongation, most commonly due to drugs, may also result in ventricular arrhythmias and syncope. These disorders are discussed in detail in Chap. 277.

Structural Disease

Structural heart disease (e.g., valvular disease, myocardial ischemia, hypertrophic and other cardiomyopathies, cardiac masses such as atrial myxoma, and pericardial effusions) may lead to syncope by compromising cardiac output. Structural disease may also contribute to other pathophysiologic mechanisms of syncope. For example, cardiac structural disease may predispose to arrhythmogenesis; aggressive treatment of cardiac failure with diuretics and/or vasodilators may lead to orthostatic hypotension; and inappropriate reflex vasodilation may contribute to structural disorders such as aortic stenosis and hypertrophic cardiomyopathy, possibly provoked by increased ventricular contractility.

APPROACH TO THE PATIENT: Syncope

DIFFERENTIAL DIAGNOSIS

Syncope is easily diagnosed when the characteristic features are present; however, several disorders with transient real or apparent loss of consciousness may create diagnostic confusion. Generalized and partial seizures may be confused with syncope; however, there are a number of differentiating features. Whereas tonic-clonic movements are the hallmark of a generalized seizure, myoclonic and other movements also may occur in up to 90% of syncope episodes. Myoclonic jerks associated with syncope may be multifocal or generalized. They are typically arrhythmic and of short duration (<30 s). Mild flexor and extensor posturing also may occur. Partial or partial-complex seizures with secondary generalization are usually preceded by an aura, commonly an unpleasant smell; fear; anxiety; abdominal discomfort; or other visceral sensations. These phenomena should be differentiated from the premonitory features of syncope.

Autonomic manifestations of seizures (autonomic epilepsy) may provide a more difficult diagnostic challenge. Autonomic seizures have cardiovascular, gastrointestinal, pulmonary, urogenital, pupillary, and cutaneous manifestations that are similar to the premonitory features of syncope. Furthermore, the cardiovascular manifestations of autonomic epilepsy include clinically significant tachycardias and bradycardias that may be of sufficient magnitude to cause loss of consciousness. The presence of accompanying non-autonomic auras may help differentiate these episodes from syncope. Loss of consciousness associated with a seizure usually lasts longer than 5 min and is associated with prolonged postictal drowsiness and disorientation, whereas reorientation occurs almost immediately after a syncopal event. Muscle aches may occur after both syncope and seizures, although they tend to last longer and be more severe following a seizure. Seizures, unlike syncope, are rarely provoked by emotions or pain. Incontinence of urine may occur with both seizures and syncope; however, fecal incontinence occurs very rarely with syncope.

Hypoglycemia may cause transient loss of consciousness, typically in individuals with type 1 or type 2 diabetes treated with insulin. The clinical features associated with impending or actual hypoglycemia include tremor, palpitations, anxiety, diaphoresis, hunger, and syncope. These symptoms are due to autonomic activation to counter the falling blood glucose. Hunger, in particular, is not a typical premonitory feature of syncope. Hypoglycemia also impairs neuronal function, leading to fatigue, weakness, dizziness, and cognitive and behavioral symptoms. Diagnostic difficulties may occur in individuals in strict glycemic control; repeated hypoglycemia impairs the counterregulatory response and leads to a loss of the characteristic warning symptoms that are the hallmark of hypoglycemia. Patients with cataplexy experience an abrupt partial or complete loss of muscular tone triggered by strong emotions, typically anger or laughter. Unlike syncope, consciousness is maintained throughout the attacks, which typically last between 30 s and 2 min. There are no premonitory symptoms. Cataplexy occurs in 60–75% of patients with narcolepsy.

The clinical interview and interrogation of eyewitnesses usually allow differentiation of syncope from falls due to vestibular dysfunction, cerebellar disease, extrapyramidal system dysfunction, and other gait disorders. If the fall is accompanied by head trauma, a postconcussive syndrome, amnesia for the precipitating events, and/or the presence of loss of consciousness may contribute to diagnostic difficulty. Apparent loss of consciousness can be a manifestation of psychiatric disorders such as generalized anxiety, panic disorders, major depression, and somatization disorder. These possibilities should be considered in individuals who faint frequently without prodromal symptoms. Such patients are rarely injured despite numerous falls. There are no clinically significant hemodynamic changes concurrent with these episodes. In contrast, transient loss of consciousness due to vasovagal syncope precipitated by fear, stress, anxiety, and emotional distress is accompanied by hypotension, bradycardia, or both.

INITIAL EVALUATION

The goals of the initial evaluation are to determine whether the transient loss of consciousness was due to syncope; to identify the cause; and to assess risk for future episodes and serious harm (Table 27-1). The initial evaluation should include a detailed history, thorough questioning of eyewitnesses, and a complete physical and neurologic examination. Blood pressure and heart rate should be measured in the supine position and after 3 min of standing to determine whether orthostatic hypotension is present. An ECG should be performed if there is suspicion of syncope due to an arrhythmia or underlying cardiac disease. Relevant electrocardiographic abnormalities include bradyarrhythmias or tachyarrhythmias, AV block, ischemia, old myocardial infarction, long QT syndrome, and bundle branch block. This initial assessment will lead to the identification of a cause of syncope in approximately
Dizziness is an imprecise term used to describe a variety of sensations that include vertigo, light-headedness, faintness, and imbalance. When used to describe a sense of spinning or other motion, dizziness is designated as vertigo. Vertigo may be physiologic, occurring during or after a sustained head rotation, or it may be pathologic, due to vestibular dysfunction. The term light-headedness is commonly applied to presyncopal sensations due to brain hypoperfusion but also may refer to disequilibrium and imbalance. A challenge to diagnosis is that patients often have difficulty distinguishing among these various symptoms, and the words they choose do not reliably indicate the underlying etiology.

There are a number of potential causes of dizziness. Vascular disorders cause presyncopal dizziness as a result of cardiac dysrhythmia, orthostatic hypotension, medication effects, or other causes. Such presyncopal sensations vary in duration; they may increase in severity until loss of consciousness occurs, or they may resolve before loss of consciousness if the cerebral ischemia is corrected. Faintness and syncope, which are discussed in detail in Chap. 27, should always be considered when one is evaluating patients with brief episodes of dizziness or dizziness that occurs dizziness or orthostatic hypotension.

Vestibular causes of dizziness (vertigo or imbalance) may be due to peripheral lesions that affect the labyrinths or vestibular nerves or to involvement of the central vestibular pathways. They may be paroxysmal or due to a fixed unilateral or bilateral vestibular deficit. Acute unilateral lesions cause vertigo due to a sudden imbalance in vestibular inputs from the two labyrinths. Bilateral lesions cause imbalance and instability of vision (oscillopsia) when the head moves. Other causes of dizziness include nonvestibular imbalance and gait disorders (e.g., loss of proprioception from sensory neuropathy, parkinsonism) and anxiety.

When evaluating patients with dizziness, questions to consider include the following: (1) Is it dangerous (e.g., arrhythmia, transient ischemic attack/stroke)? (2) Is it vestibular? (3) If vestibular, is it peripheral or central? A careful history and examination often provide sufficient information to answer these questions and determine whether additional studies or referral to a specialist is necessary.

Approach to the Patient: Dizziness

History

When a patient presents with dizziness, the first step is to delineate more precisely the nature of the symptom. In the case of vestibular disorders, the physical symptoms depend on whether the lesion is unilateral or bilateral, and whether it is acute or chronic and progressive. Vertigo, an illusion of self or environmental motion, implies asymmetry of vestibular inputs from the two labyrinths or in their central pathways that is usually acute. Symmetric bilateral vestibular hypofunction causes imbalance but not vertigo. Because of the ambiguity in patients’ descriptions of their symptoms, diagnosis based simply on symptom characteristics is typically unreliable. The history should focus closely on other features, including whether this is the first attack, the duration of this and any prior episodes, provoking factors, and accompanying symptoms.

Dizziness can be divided into episodes that last for seconds, minutes, hours, or days. Common causes of brief dizziness (seconds) include benign paroxysmal positional vertigo (BPPV) and orthostatic hypotension, both of which typically are provoked by changes in head and body position. Attacks of vestibular migraine and Ménière’s disease often last hours. When episodes are of intermediate duration (minutes), transient ischemic attacks of the posterior circulation should be considered, although migraine and a number of other causes are also possible.